

LUNARPORT

A launch and supply station for deep space mission

'ICE RUSH'

'ICE RUSH'

Lunarport will be a launch and supply station for deep space missions. Lunar in-situ resource utilization will allow larger (more massive) payloads to be launched from Earth, bringing deep-space a little closerfor human exploration.

Landing humans on Mars, Europa, or even an asteroid will be the near future with Lunarport.

(credit: Caltech Space Challenge 2017)

Our science and exploration goals need interplanetary transport of large masses.

© Team Voyager 2017

Lunarport will <u>triple</u> the mass that interplanetary missions can carry.

\$1 billion per year.

Mining resources at Lunar pole.

Autonomous construction and operation.

2. EUS brings customer payload on trans-lunar trajectory

> 3. EUS performs Manifold Orbit Insertion to rendezvous with depot in halo orbit

1. SLS Launch for Translunar Injection

Caltech SPACE CHALLENGE March 26-31, 2017 sponsored by OCARBUS DEFENCE & SPACE Team Voyager

4. Dock and refuel

© Team Voyager 2017

5. EUS departs for deep space

Mission Justification - Evolvable Mars Campaign

(Crusan, 2014)

7

Voyager

NASA Transition Authorization Act of 2017

Rep. Culberson (R-Tex):

As Eisenhower was remembered for creating the interstate highway system, Trump will be remembered for creating an interplanetary highway system

"The United States should have continuity of purpose for the Space Launch System and Orion in deep space exploration missions, using them beginning with the uncrewed mission, EM–1, planned for 2018, followed by the crewed mission, EM–2, in cis-lunar space planned for 2021, and for subsequent missions beginning with EM–3 extending into cis-lunar space and eventually to Mars [in the 2030s]"

Mission Justification - Deep Spaceway Gate to Mars Transit

William Gerstenmeier, presentation to NASA Advisory Council committee, 3/28/2017

Lunar Human Exploration Strategic Knowledge Gaps Addressed

Strategic	Knowledge Gap	LP Relevance
I. Under	standing the Lunar Resource Potential	
D-3	Physical characteristics of entrained volatiles	VH
D-4	Understand slopes, elevations, block fields, cohesiveness of soils, trafficability	VH
D-5	Landed missions to understand the charge reservoirs (plasma or ground) in the low conductivity environment	VH
D-6	Determine the form, concentration and distribution of volatiles, how they vary from depths 0-3 m over distances of 10-100m scales.	VH
Е	Understand the volatile contents of RDMDs, as well as their depth and distribution	LM
G	Measure the actual efficiency of ISRU processes in the lunar environment.	М
III. Und	erstand How to Work and Live on the Lunar Surface	
A-1	Collect raw materials; create trenches, roads, berms, etc.; enables ISRU, surface trafficability, and gjecta plume mitigation.	VH
A-2	Load, excavate, transport, process, and dispose of regolith; enables ISRU, surface trafficability, and ciecta plume mitigation.	VH
A-3	Crush, grind regolith; understand effects of commination; enhances ISRU process efficiency.	VH
B3	Ability to remotely traverse over long distances enables a) prepositioning of assets, and b) robust robotic precursor missions.	н
B4	Autonomous landing capability for robotic missions similar to that demonstrated by Chang'e-3 lander.	VH
C2	Characterization of geotechnical properties and hardware performance during regolith interactions on the lunar surface.	н
D4	Multiple landings at the same location on the lunar surface may scour or damage systems and equipment already emplaced at that location. Ejected regolith velocity, departure angles, and energy in engine plume exhaust need to be measured in situ to better understand mitigation strategies	м
F2	Polar missions may be positioned in areas with extended solar availability; blackouts may extend to 3-5 days requiring 100s of <u>kWhours</u> ; batteries will be prohibitively expensive	VH

Mining Life Cycle and Development Plan

Establishing and Exploration Target

Type of resource sort: Water ice

Size and Quality: > 4wt% water and able to supply propellant to support cargo and crewed flights to Mars by the mid-late 2030's

Geographical Parameters: Lunar south pole

Geological Parameters: Permanently Shadowed Region (PSRs) - Approx. less 100K with potential for stable ice at the surface, distribution likely governed by small impact cratering

Engineering constraints: Located in proximity to appropriate landing / base construction site, traversable terrain

Voyager

Caltech

Site Selection

LRO Diviner South Pole Temperature Map (Credit: NASA/JPL)

10 Km

Ice Rush Mission Site Selection

"Scout" Lunar Resource Prospector Requirements

Primary Requirement:

• Identify water-rich deposits (>4wt%) for future mining missions

Secondary Requirements:

- Define composition, water content and extent of the of the water rich deposits;
- Characterize terrain and environment (i.e. slope, identify geo-hazards, trafficability, temperature);
- Define accessibility / extractability of the (geo-mechanical properties of regolith, depth to resources)

"Scout" Lunar Resource Prospector

Lunar Resource Prospector (Credit: NASA JPL)

RP Neutron Spectrometer (Credit: NASA/JPL)

RP subsurface drill and sampler (Credit: NASA/JPL)

Lunar Miners Requirements

Primary Requirements:

- Produce 19.5 tons of water by 2026 (LRS propellant transfer technical demonstration)
- Produce 45.2 tons of water by 2028 (technical demonstration of propellant transfer between LRS and orbiting propellant depot)
- Produce 703.8 tons of water by 2032 (1st two cargo missions to Mars)
- Produce 175.9 tons of water by 2034 (1st crewed mission to Mars)

Secondary Requirements:

• Continue refueling two cargo and one crewed mission to Mars every four years

Caltect

Lunar Miner

Lunar Miner

The proposed structure of the lunar miner is based Apollo lunar roving vehicle. For the coring and processing system the Honeybee Robotics Planetary Volatiles Extraction (PVEx) Corer will be used.

Honeybee Robotics PvEX Corer (credit: Zacny et al 2015)

Lunar Miner

Lunar Miner in Operation

Subsystem Breakdown

Component	TRL	Analog				
Scout	5	Lunar Resource Prospector with RTG and Lidar	Mass	Power	Cost	
Miner	9 6	Structure - Apollo lunar roving vehicle Drill and Processing unit		• 1	• 1	
Tet	-1.				• -	
1000	11.					

Scout and Lunar Miner - Tech Development

Scout (Lunar Prospector Rover)

Current Technological Development:

- Prototype RP15 built
- Undergone environmental and stress testing on the OVEN, LAVA and DRILL subsystems

Future Studies

 Integrating RTG and Lidar system

Lunar Miner

Current Technological Development:

- Prototype of PvEX corer built by honeybee robotics
- Laboratory testing under lunar analog conditions
 of corer and processing unit
- All tests were conducted using JSC-1A lunar simulant mixed with water at 6 wt% or 12w t% saturation level.

Future Studies:

- Integrating design with Apollo Lunar Lander
- Integrating design with microwave beamer technology

Voyager

Prospecting and Mining Rovers

		1				
		2				
LIKELIHOOD		3	4 & 5			
			6			
				7		
	CONSEQUENCES					

Risk Assessment

1. Thermal Effects

2. Miner rover drill bit stick in hole or damaged

3. Geo - mechanical properties exceed drill capabilities

4. Rock or obstructions block power pathway

5. Miner / Prospector Rover fault

6. Total loss of communication with rover

7. Prospector drill stuck in hole

8. Micro - meteorite

9. Solar flare

Caltech

Mining Schedule

Total Water Production Rate (tons/year)

Year

Lunarport Construction

2020 2021 2022 Phase 3 - Solar Panel - Beamer - Batteries - Com - Mining Robot (6) 2023 2032

Landing Panel Diagram

Construction Requirements

• Primary Requirements

- Constructing a Launchpad for the LRS
- LH2, LO2 and H20 connection interface
- Secondary Requirements
 - Miner road infrastructure
 - Protective regolith berm

Construction Subsystem Breakdown

Voyager

Caltech

Construction

LIKELIHOOD		Overestimate vehicle lifetime			
		Cannot develop technology in time	Berm slope failure		
			Road failure	Docking failure	Sintering robot failure
	CONSEQUENCES				

Risk Assessment

- use of sintered soil roads are well within the industry specifications, and hence durability, performance, stability and safety can be assured
- The covering berm will act as a shield against radiation and asteroid impacts on lunar structures and rovers
- The landers will initially be covered by a carbon fiber deployable structure

Power Requirements

• Primary Requirements

- Solar panels (100kW/miner)
- RTG's (300W for prospector)
- Lander batteries
- Rover batteries
- Cables
- Microwave beaming

• Secondary Requirements

- Power another lander
 - Cable or beaming

Power Requirements

35

Caltech

GALEAT

Power

LIKELIHOOD				Solar power deployment	
		Power cable disconnect		Microwave beaming failure	
				Battery leakage	
	CONSEQUENCES				

Risk Assessment

Solar panels and nuclear does not present significant technology development risks
Operational risks include the deployment of the solar arrays and microwave transmitter from the lander
Transmission of energy can be decreased in case of block of line of sight

- Rovers are equipped with emergency batteries to handle the block of line of sight risk

Thermal Control

Potential Problems

- Operability at 40K-180K temperature range
- Radiation heat transfer

Solutions Proposed

- 2x dual heat spreaders with heat pumps
- Attachment of temperature sensors and heaters on required components
- Copper thermal straps
- Passive and active thermal control systems
 - Ammonia circulated radiator
 - Coatings, heaters, heat pipes, RHU

Regolith Protection

Potential Problems

- Clogging of dust in robotic joints
- Abrasive dust on solar panels
- Ejection of regolith when shuttle lands
- Sinking of robots

Solutions Proposed

- magnetic straps around seals
- Highly flexible conformal covers similar to ATHLETE
- Electro magnetic vibrators for solar panels
- Deployable structure on landers to avoid dust
- Compacted regolith layers on structures
- Construction of a covering berm
- Bigger wheels with ribs for more area

© Team Voyager 2017

Radiation

Potential Problems

- Ionized radiation penetrations
- Increased temperatures

Solutions Proposed

- Regolith covering on structures
- Covering berm
- Radiation-hardened electronics
- Electrostatic shielding

Asteroids

Potential Problems

- Crashing onto structures
- Rover damage

Solutions Proposed

- Regolith cover on structures to absorb kinetic energy
- Construction of the covering berm

40

Space System - Lunar Resupply Shuttle (LRS)

Requirements

- Transport propellant resources from lunar surface to depot in cis-lunar space
- Reuse for multiple Moon-L1 trips
- Minimal risk and cost
- Develop in <9 years

Team Voyager

41

Timeline

Descent and Landing

Components

Subsystem Components

45

Technology Development

2017-2022: Mature mid-TRL technologies

Lunar Resupply Shuttle

LIKELIHOOD		Overestimate Vehicle Lifetime			
		Cannot develop technology in time	Refueling Failure		
			LRS Crashes on Landing	LRS Crashes into Base	
	CONSEQUENCES				

Risk Assessment

The highest-consequence risk is an LRS crash which destroys base equipment
The likelihood of this risk is reduced through a clever choice of landing trajectory
The most probable risk is that the estimate vehicle lifetime estimate cannot be achieved

Requirements

- Receive H_2O from the LRS and convert to LO_2 and LH_2 through electrolysis
- Store water and propellants at necessary conditions (warm for H₂0 and cryogenic for LO₂ and LH₂)
- Design to minimize risk and costs
- Total development time of 5-10 years or less
- Provide docking capability for commonly used spacecraft
- Modular design for scalability and sustainability

Design Architecture Flow

Subsystem Breakdown

Component	TRL	Analog
Propellant Generation System with Electrolysis	7	Modified version of ISS Oxygen Generation System (OGS)
Cryogenic Storage tanks	6	NASA Composite Cryogenic Tank
Fuel Transfer Device	9	Robotic Refueling Mission (RRM) plus improvements
Foldable Solar Array and Power System	4	Based on Miura Fold with 9.26 fold ratio
ADCS	7	Moog ISP DST-11H Bi- Propellant thruster modified to utilize LO2 and LH2

50

Technology Development

Propellant Generation System with Electrolysis

- Baselined with the ISS Oxygen Generation System (OGS)
- Depot design modified to produce propellants
- Assume large-scale improvement over time

esa_multimedia/images/2010/01/ kup_of_the_oxygen_generation_system_r

tp://www.compositesworld.com/articles/nasaboeing-composite-launch vehicle-fuel-tank-scores-firsts

Storage Tanks

 Cryogenic cooling tanks based on small-scale demonstrated NASA composite tanks (must scale up)

Solar Array and Power System

- Baselined with the Miura Fold
- Fold ratio = 9.26
- Scale to achieve side length of 18.5 m

s://upload.wikimedia.org/wikipedia/commons/thumb/1/1 Ori_CP.svg/1200px-Miura-Ori_CP.svg.png

51

Schedule

Module	Purpose and Description	Launch Departure and Arrival
1	Small Standalone Module	2022
2	Propellant Tank Module (1)	2024
3	Solar Panel Module	2026
4	Electrolysis and Water Tank Module	2028
5	Propellant Tank Module (2)	2032

Space Systems

Lunar Transfer Vehicle Design

© Team Voyager 2017

Lunar Transfer Vehicle

	LTV - Compact	LTV - 5T Plus	LTV - 20T Plus
Payload	1 Astrobotic Lander + P-POD deployer with 6U CubeSats	5 Astrobotic Landers + Ground Deployment Mechanism	Depot Carrier with Full 20T Depot.
Objective	Transfer from LTI to LLO + Lander and CubeSats Deployment into LLO	Transfer from LTI to LLO + 5 Landers Deployment into LLO	Insertion into Halo L1 orbit and full 20T Full Depot Deployment.
M _{payload}	M _{TOTAL PAYLOAD} - M _{Astrob_LL} - M _{P-POD + CubeSats}	11	23
N _{TOT LTV}	3	16	26
Launch Oportunity	Shared Falcon Heavy Expandable (4T share)	Falcon Heavy Expandable (16T Full Payload capacity)	SLS B1b

Voyager

53

Space Systems

SEP Tug Design Notes

Element Concept	Element Name	Dry Mass, kg	Maximum Wet Mass, kg	Dimensions
	300kW SEP Tug	6,000	36,000	5m dia., 8m overall length (OAL), Stowed
	600kW SEP Tug	8,000	76,000	5m dia., 10m overall length (OAL), Stowed

	Concentric Channel HET (3 channels)
Input Power	200 kW
Specific Impulse	1300 - 5000 s
Thrust	5 – 14 N (25 – 70 mN/kW)
Mass Flow Rate	100 – 1100 mg/s (Xe)
Efficiency	45% - 64%
Specific Mass	0.5 kg/kW (thruster) 1.4 kg/kW (thruster, PPU)
Major Thruster Dimensions	0.65-m diameter 0.10-m length

Isp		m1	m_prop1	dM_prop	# trips/tank m	_tank (mt)	m_refuel (mt)	Price Refuel	mdot (kg/s)	t (days)	t (mo)
	1000	88.39218	-24.6078	89.60782	0.7253832	5.81152	70.81152002	\$ 150,120,250.00	0.0036735	282.33	9.41
	2000	125.4345	12.43448	52.56552	1.236552				0.0018367	331.24	11.04
	3000	140.9563	27.95634	37.04366	1.7546864				0.0012245	350.14	11.67
	4000	149.4233	36.42335	28.57665	2.2745843				0.0009184	360.15	12.00
	5000	154.7458	41.74577	23.25423	2.7951899				0.0007347	366.34	12.21
	6000	158.399	45.39896	19.60104	3.3161498				0.0006122	370.54	12.35

Caltech

GALEA

Space Systems

Technology Development

- Lunar Lander (Astrobotics Griffin)
 - Under Development for Google Xprize missions ~ 2020
- Lunar Lander (Masten Space Systems XEUS expendable)
 - Estimating completion by ~2025
- Lunar Transfer Vehicle (in-house)
 - Completed by first launch 2020
- Astrobotics Lander Deployer (in house)
 - Completed by 2022
- L1 Transfer Vehicle
 - Completed by 2030

Voyager

Space System

Fueling Depot

	Propellant boil-off				
LIKELIHOOD					
		Missed docking		Pipeline misalignment	
			Inaccurate thermal control	Failure of solar panel deployment	
	CONSEQUENCES				

Risk Assessment

The insignificant risks that will happen is the process of propellant boil-off
The possibility of a missed docking of one module to the next when delivered
The potential of an inaccurate thermal control event occurring on any one of the storage tanks
The failure of the the deployment of the solar panels, especially in the third module

Mission Design - Orbital Operations

Requirements

- Cargo delivery to lunar surface will provide:
 - 0.3 mt payload capability by 2020
 - 1.5 mt payload capability by 2022
 - 5.0 mt payload capability by 2024
 - 10.0 mt payload capability by 2030
- At least 20 mt payload to EM L₁ halo orbit by 2030
- Constraint on cadence requirement, max: •
 - 1 Falcon Heavy/yr from 2020 2028
 - 3 Falcon Heavy/yr from 2029 2050
 - 0.5 SLS/yr from 2022 2032

General Timeline

58

Caltech

GΛLŰŰ

Prospector Delivery

Construction Phase

Depot Construction Phase

Operational Phase

Tug - Assisted Operational Phase

Why a Depot?

- Establishing infrastructure as cislunar gas station
 - Rendezvous for pre-fueling of crewed Mars missions
- Enables ferry architecture
- System-level boil-off mitigation for long-term storage
- Enables ferry architecture (tug from LEO => L1)

Source: Baine, M. (2010)

Solar Electric Propulsion (SEP) Tug

- enables **propellant cost savings** via high fuel efficiency but low thrust
- utilized for non-time critical missions (cargo delivery, robotic missions)
- 3x 200 kW magnetically shielded concentric channel Hall thrusters
- delivered via 2x Falcon Heavy to LEO and assembled (76 t wet mass)
- 1 yr transit from LEO <=> L1, 2.3 trips/tank of propellant

X2 HET (Umichigan)

Parameter	Value
HET Power	200 kW
lsp	5000 s
Thrust	48 N
Total Efficiency	60%
Lifetime	> 50,000 hrs

Hall thruster parameters

SEP Tug Architecture Cost Analysis

Voyager

Budget

Development costs.	Based on initial	2022 mission	, with analog	technologies listed.	1
--------------------	------------------	--------------	---------------	----------------------	---

System	Source	Development and Construction Cost (SM)
Project Management, Systems Engineering, Safety and Mission Assurance	9% of all non-launch costs	\$102
Mission Operations and Ground Control	10% of all non-launch costs	\$114
Payload and Spacecraft	Sintering Rover— based on mass Prospector— Lunar Resource Prospector with RTG and LIDAR Miner Rover—Structure: Apollo Lunar Roving Vehicle, Drill from Honeybee Robotics Electrolysis unit—ISS Small Lander—Astrobotic lander Big Lander—Apollo lander Depot modules—NASA grotypes request Communications—Cubesat estimates LRS—Cargo Dragon, Cygnus, and Centaur	\$2405
Systems I&T	Double Curiosity for non-recurring; same as Curiosity for recurring	\$200
Launch/Vehicle Services	SLS plus Falcon Heavy	\$1270
Science/Technology	5% of total cost	\$57
Reserves	Fixed cost, 20% of total	\$481
Total		\$4629

Payload Capacity Increase

vager

SPACE CHALLENGE

March 26-31, 2017

sponsored by O AIRBUS DEFENCE & SPACE

68

Future Business Plan

No-cost NASA refueling station No-cost international collaboration refueling station No-cost commercial and NASA refueling station for solar system exploration: Sale of Ice Rush to net \$0 cost Sale of Ice Rush in exchange for future NASA utilization

Political Considerations and Planetary Protection

Outer Space Treaty vague on resource utilization U.S. and Luxembourg have authorized prospecting missions

FAA AST mission authorization currently ad hoc for non-traditional commercial missions

Category II Planetary Protection

Will submit Planetary Protection Plan prior to end of Phase B

70

Risk

Technical

Production capacity is low because of unknown ice content Send more more prospectors, add drills, refuel smaller missions, spend more resources on mapping

Cost

Landers, rover cost Mass production will cut costs. Same mitigation as low production capacity

Schedule

SLS/Falcon/New Glenn launch cadence uncertain

Possible to mitigate by using international partners, launching smaller missions, utilizing other customer lines

Political Budget is always uncertain, as is direction under Executive Branch transitions Current Presidential/Congressional support is high

71

Education and Public Outreach

Adopt-a-Rover

K-12 EPO program to name and adopt a miner

Prospector Robot Program

Grades 3-12 learn to program senso robots

Mars Trail Citizen Science Program

Identify possible future mining areas, earn virtual structures to incorporate in your own architecture to Mars (input into a Sim City-like program)

Ice Rush VR

Team Voyager 2017

Participants

Bryan Sinkovec **Daniel Pastor** Donal O'Sullivan Gary Li Jack Henry de Frahan Joseph Sparta Matt Vernacchia Mercedes Herreras Martinez Nathan Sharifrazi Nick Jamieson Sophia Casanova Sumudu Herath Sung Wha Kang Sydney Katz Therese Jones Vinicius Guimaraes Goecks

California Institute of Technology California Institute of Technology California Institute of Technology University of California, Los Angeles **ISAE-SUPAERO** Georgia Institute of Technology Massachusetts Institute of Technology Arizona State University University of California, Irvine University of Cambridge University of New South Wales University of Cambridge Rhode Island School of Design Washington University in St. Louis Pardee RAND Texas A&M University

Space Engineering Space Engineering **Astrophysics** Aerospace Engineering Applied Math, Aerospace Engineering Aerospace Engineering Aeronautics and Astronautics Engineering Aerospace Engineering Aerospace and Mechanical Engineering Aerospace Engineering Mining Engineering **Civil Engineering** Industrial Design Electrical and Systems Engineering **Policy Analysis** Aerospace Engineering

Thank you to our sponsors!

Caltech Space Challenge 2017 Sponsors

Voyager

74

